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Abstract, e this work we show how the Poincaré—Cartan forrn ¢an be used to describe the
symmetries of Lagrangian supersymmetric {possibly p-adic) field theories. We show that the
existence of the Poincaré—Cartan form in supermanifold theory is ensured only in a relevant
class of Lagrangian densities. Moreover, we give an abstract characterization of supersymmetric
invariance based on the Poincaré—Cartan form.

1. Introduction

Various supersymmetric models of field theories have been considered (for a review see
[1-3]). Unfortunately there is as yet no experimental evidence of supersymmetry in nature,
although ideas from supersymmetry have proved very useful in mathematics [2]. The notion
of a supermanifold [4-8], which bas mainly been developed to deal with supersymmetric
theories, gives a convenient approach for discussing an arbitrary field theory, not necessarily
a supersymmetric one.

As ig well known, in the Feynman path integral approach to quantization one deals with
a classical action in which fermionic fields are represented by anticommuting fields. Also
recall that any gauge theory being quantized by using the BRST procedure should include
anticommuting variables (see [9]).

In this article, we develop an approach based on supermanifold theory which is suitable
to describe models with anticommuting fields which are not necessarily supersymmetric.
This provides us with a framework which is general enough to include such different
theories as the usual quantum electrodynamics, the Yukawa interaction, superstrings and
supergravity, as well as BRST-quantized gauge theories. Although many models with
anticommuting fields have already been considered in great detail in the literature, the
purpose of this article is to give an exposition of theories with anticommuting fields with
the same degree of generality as occurs in classical mechanics [9-11].

We consider a functional analytic approach to superanalysis and we obtain a unified
approach to finite dimensional as well as to infinite dimensional systems. This could be
interesting, for example, in view of the known analogy existing between the description of
the rigid body motion in finite dimensional mechanics and the infinite dimensional theory
of incompressibie fluids [12].

Our main results are true also in the field of p-adic numbers (for p-adic superanalysis,
quantem mechanics and field theory see [13-15]).
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‘We consider field theories with fields taking values on a supermanifold and arguments
on a real or p-adic manifold and we discuss fields which are maps from a supermanifold
to another supermanifold. We study the action of superdiffeomorphisms on the Lagrangian
density £ and the Poincaré—Cartan form ©.

Some elements of the theory of the action of the superdiffeomorphism group on a
supermanifold field theory can be found in the article [16]; since we use some notation
already introduced in that article, we suggest to the reader not familiar with jet-bundle
theory to read this article. In the present article we significantly extend the results presented
there by studing in great detail the action of the superdiffeomorphism group by introducing
a particular system of coordinates called ‘covariant coframe coordinates’ which will allow
us to obtain a simple way to characterize supersymmetric Lagrangian density.

Moreover, by returning to Poincaré~Cartan form theory, we show that @ exists globally
if £ is geomerric and, in this case, the field equations follow from the Poincaré—Cartan
form as in usual field theory (see, e.g., [17]).

As an example, we shall explicitly consider the theory of N = 1 supergravity and we
shall give the relevant Poincaré~Cartan form.

We remark that the whole discussion will be given in a consequential way and results
will be sumumarized as propositions which, accordingly, will not be followed by *formal’
proofs.

2. Some concepts from real and p-adic supermanifold theory

As is well known, there are several mathematical approaches to supermanifold theory. For
our purposes it will be convenient to rely on the definitions in [4]- The main ingredient of
a supermanifold theory is a Zp-graded commutative Banach superalgebra O over a normed
field A [13-18]; for the real Grassmannian case see [19-22]. More precisely, Q is a
Zy-graded commutative Banach algebra @ = Qo & @) such that gq; = (—I)"jaja; if
a; € Gi,a; € 0.

Let us remark that the field A over which @ is a Banach space is assumed to be quite
general: it can be R, C or also the field &), of p-adic numbers. As a conseguence, our
theory is also true in the framework of p-adic supermanifold theory [23-25). Since p-adic
supermanifold theory is not very extensively covered in the literature, we present some
details.

The (n, m)-dimensional superspace is the A-linear Banach space V™" = QF x
. + . .
Q7 endowed with the norm |lu|| = Z:_f'ilujll; in the p-adic case we set ||u|| =

Maxigjgatm ||4;]] in order to obtain a non-Archimedean norm.

A map F: V"™ — @ is called S-differentiable (or supersmooth) in x € V™™ if it is
differentiable in the Frechét sense [26] and if its Frechét differential (Df)(x): V*" — 0
in the point x is multiplicative. In this article we require that the multiplicative operator
describing the Frechét operator is unique; to this end, we assume that Q admits a trivial
Q1-annihilator ([27]).

A supersmooth map f will be called an S* map if it is k-times continuously
superdifferentiable. The set of superanalytic (abbreviated SA) maps f:U C V™™ — O
is denoted as S¥(L/), (for the p-adic manifold case see [28] for details).

We now define SC*(U) to be the set of S*(L/) maps such that || D* f(x)] is bounded
for any x € U. If k # e, SC*(U) is a Banach space with respect to the norm

Al = Z sup |.D* f ().

i=0,...k XV
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An (n, m)-dimensional §* supermanifold M is a topological manifold with a
superdifferential structure. In some cases the algebra Q admits a projection £: Q@ — A,
often called the body map. In these cases, under some further technical assumptions [4, 29],
one can construct the ordinary n-dimensional body manifold My by glueing together all the

local projections & (x',..., 8"} = (!,...,r",0,...,0).
Let E be a supervector bundle 7: E — M with the vector superspace F as standard
fibre ([4]).

Let 1 be an S* automorphism of E. lts first jet extension ju of w is the unique
automorphism of JE such that, for any local section s: Y C M — E, jmo ju=fBojm
and ju o js o 1 = j(u o sp") (see [30]).

Finally, consider a one-parameter group {i,} (¢ € A) of supersmooth automorphisms
of E and denote by ¥ its generator (for p-adic supermanifold theory we assume also that
every u, is strictly differentiable [23,24]).

The generator j¥ of {j(u;)} is the jet extension of Y. In local fibred coordinates

of E, where x* = (x',...,x%, 8%, ...,8""™) are coordinates in M and v* =
', ...v", v, ..., v™) are coordinates in F (dim F = (r, s)), we set
Fi] a3
=t Y —
Y=e¢"(x) st R (x, U)BU“ n

By using local fibred coodinates (x4, v*, v ) in JE, we get
. ] 2 ah%(x, v) Bh%(x,v) det i}

— A — ha , - B - _po)—_ )
J¥=e'x) AxA A ”)aua + OxB t s Jvb ax8 VA v @)

3. Supermanifold Lagrangian theory

In a supermanifold theory there are essentially two possibilities for constructing the action
functional; the first one relies on using the Berezin integral to construct a ‘top form’ in M
and defining the action as functional by means of a ‘scalar Lagrangian® £ as

f Ld"x d™8. 3

In the second approach we assume instead that there exists a body manifold My = ¢ (M)
of M and consider a set of local injections {i,} (see [16] and the following for details).

As usual we denote the ‘configuration bundle’ over M by E; the standard fibre is a
vector superspace F' and local coordinates are (x#, v"). We also assume that the Lagrangian
is a bounded, horizontal and 4 n-form of JE with values in Qg, i.e. £ € hor Q" (JE).

Now, for every open subset U, of M, for every local injection i,: V,, — U, (V, denctes
the body of U,) and for every section s of E, we define the action infegral as

Aalins) = f rGaL @

This integral is calculated on My and it is a standard integral of Banach valued functions
(see also [7, 18,31,32]}.

The second approach allows us to build a very rigorous integration theory and a
variational calculus in the framework of Banach analysis; in this article we shail rely on
this second approach and, for the sake of clarity, we begin by giving some further detail.

If M is an SA supermanifold with body My there always exists an atlas A of M
{(U,, ¥,)} and an atlas Ag of My {(Vy, &)} such that [16]

() ©(Uy) = V,; for ail o;
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{ii) for any & there are analytic embeddings i: V, — U, (local injections) such that & -i
is surjective;

(isi) for any couple of local injections i, k: V,, — U, there is an SA automorphism x of
M such that i = x - k;

(iv) for any map i there are maps f: Vy — p such that i* flzy, = 0;

(vyif wis a p-formon U C M, p € r and " = 0 for all local injections i1V — U
then w =0,

Notice that these conditions do not imply, in general, that a global injection of Mg in
M exists.

Now we give a Banach structure to the space of local sections of E by stating that the
completed tensor product B, == §C*(U,) ® F is a Banach space.

Now we consider the problem of defining the space of admissible variations. For every
Ve and every injection i, the set of admissible variations related to the open subset U, and
to the local injection i: V, — U, is the Banach space B,,; = {s € ['(Uy)|i*s =0 on dV,}.
I'(U,) denotes the set of local sections s defined on U, € M with values in x~1(U,) € E.

This space can be regarded as the space of tangent fields X € Vert T'E such that their
components X" satisfy the equations (i*X"})|ay, = 0.

Let us consider again the acton functional (4). The following two equations are
equivalent and characterize the critical sections s :

DAL, s)- X =0 (5)
f it js*LixL=0 )
Ve

for all &, all { and all X s.t. X" € By,
In the following we use coordinates x* = (x',60 on M (i =1,...n;a = 1,...,n)
and coordinates v” on F; (x*, v") are coordinates in E and (x*, v", v J)in JE.
According to this nofation the Lagrangian £ is

I
L= -?:ITZAh..A,.d‘xm . dxA"‘CA...,A,, @, vy

where A1, Az, ...=1,....m+n.
In this framework a particular role is played by the so-called geometrical Lagrangian
forms. They are the Lagrangians for which there exists forms £/v" which allow us to write
L aL
LS T shind
A3, BT M
where h' = dxAh’, for any admissible variation »”. The terms L/v}, £/v" are related by
the equation

.E = dxf‘-(_I)A(A-J-rJE

r r
v, dv

&)

which, in turn, can be written as a set of algebraic restrictions on the derivatives of £.
Lagrangian forms which are built up by means of connection forms, curvature and torsion
forms, by using the wedge exterior product are geometrical {[16]).

Proposition 3.1, Let us assume that £ is a geometrical Lagrangian; a section s is critical iff
aL aL

Jjs E}T_d(ﬁ)m=0' )]
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Proof. For X € B,; we put X = b"3/8v" and compute i*(js)*L;x £ = i*(jsy*jX_| dL.
We have

T WICPRT 2N — TN rg -*i k ' * E
fz(JS)JXJdﬂ—fz(JS)b r+/‘3,a( m)auﬂ)
f DY (( D )
- f P8 ((m ~ S aﬁ,) (10)
+fiw$ ((s*br)((js)tdan ”( I)A(A+r))

2L aL oL
= f i*(s*b") ((Js)*— —d(js)* 5——) f i d((s*b’)(fs)* ™ )

We have reported the explicit calculation, since our hypothesis about £ allows us to relax
the so-called ‘kinematical constraints’ of Wess and Zumino [33]. By using the fact that the
local injection i is arbiirary the first term vanishes which, in turn, yields the required field
equations since the second term vanishes for the boundary conditions. O0

Now we study the Poincaré-Cartan form; it has the following expression
® =L+ (v —dx*v)) O, (11)

where the forms O, € hor " (JE) @ F* are still to be determined.
Now we suppose £/x4 = 0 and compute the differential

ac BE
d f— +duvfy
@ =dv o + 8
Considering a vector field X of T(J E) written as

i
dug

dx®ug) dQ, +dx? dv) Q. (12)

]
X-a 'é—+br‘é?+0ér

we calculate iy d©:

8L aL
ixd@® =b" (—‘; —dQ,.) + C; (

dv S

_ )A(A-I-r) dxA Qr)

+af(vpdQ, +du/Q,) - dv'a—i; (a®isL) - du;‘%{ (@®ipL)

+dxtdv] (a®iz Q) + (dv" —dx?v )} ix dQ,. (13)
Consider now a local injection i and calculate

i*. js* iy d@® =0. (14}

We observe that the terms multiplying the coefficients C’, vanish only if £ is geometrical
and g, = L/v". Moreover, the terms multiplying a® cannot be zero in general. Our final
prescription for the Poincaré—Cartan form is hence

© = L+ (dv' —dx*v,) Z—EU" (15)

We can fipally state the following
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Proposition 3.2. Let £ be a geometrical Lagrangian form; the expression

it st ixde =10 (16)
is zero for each vertical vector field X € T(JE) iff the following equations are satisfied:

aL aL

— —-d——=0.

du” v’ an

4. Symmetries, superdiffeomorphisms and jet extensions

We assume that the configuration bundle £ — M is the fibred product (see, e.g., [34]) of the
bundle V(M) of linear coframes on M, the bundle of connections C (M) on some principal
superfibre bundle P(M, G) and a further bundle F(M) of zero forms with values in some
vector superspace F. We denote by g the super Lie (L) algebra of G. More precisely,

E = V(M) x4 C(M) x3g F(M)

and a local section s of E is s(x4) = (x4, e? = dxCef(x), w? = dxCwf(x), £ (x)).

A point u € E describes a connection, an extra field and a metric, by regarding e? as
a Lorenzian coframe; in other words, the metric is 54z e*e?.

Every element a of G naturally acts on C{M) and, by means of suitable representations,
on V(M) and F(M),

We denote by C,2 the structure constants of the SL algebra g and by the symbols p,2, 7,/
the generators of the representations of the actions of g on TM and F respectively.

By considering a fibre-depending action of G on E, one obtains a vertical motion in
E the tangent vector field of which will be denoted by Y. Then the following proposition
holds.

Proposition 4.1. Let us denote by A¢ an element of g; the local representation of the vertical
field ¥ describing the vertical motion induced by A% is

Y =(Dg

Ad — r d
-~ o7 paca § A o (18)
where
At
(li’ffA“)—a + (D A%wf

The bundle E is a bundle of (super)-geometrical quantities; by considering a
superdiffeomorphism 8: M — M, one obtains a natural action on E given by the pull-
back ¢ = B*. Accordingly, the following holds.

Proposition 4.2. Let § be a one-parameter SL group of SA diffeomorphisms of the
supermanifold M. Then the couple (8, ¢ = £ *) is a one-parameter SL group of SA
automorphisms of E. For any local section s the map s, = ¢ 1osop is also a section,

The action of &, can be described as follows. If ¥ = (x4,¢® = derAB, w? =
dx'*m,f, £} is a point of E and v = 5, then the coordinate description of 4 — w = &,(u)
is
xA > x4 410t el = ef — 105 ef wi = of —Sod BT &

Now, there is a large arbitrariness involved in the choice of the coordinates in E. In
particular, we use the coframe e* as basis for the connection one forms and set o = 2@ §.
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Of course, w,” = ¢ L@ In this way the coordinate description of the map u — w = & ()
is
x* = x* 4 nf el > ep — 105 ef af = ay E— &, (19)
Under the above choice, the following proposition holds.

Proposition 4.3. The vector field Z, tangent to ¢, has the following representation in the
coordinates x4, e 2, & f, &

] v 2
=vi—- P, 20
Z=v5a (Bx )e de @0

Let us now consider the jet extension j(qﬁ,) of d;, to JE. The couple (8, j (43,)) is still
an automorphism of J E. We introduce the following ‘covariant coordinates’, for which the
relation to the standard ones on a section is

dew
jsRE =— ax_B (—DAEy b A iC g
, wp C aeBc A(B+D) a, C
is TA.B = — E'x—"- {— 1) €g /\C()A Pap (21)
s hmAr gr At
Js"By = o3 7+ (=1 ol
Now, as the last step, we use again ‘covariant coframes’ (CC) coordinates:
EAB — EAB é')Aa — e;l S wsd
gr = ";_-r TAB — EEI S -1 RT‘Rg(—l)A(S-*—B) (22)
Ei=e'"Bf Q5= e;l Tep Mg (-HerR,

We now consider the lift of Z to J E. The following proposition holds.

Proposition 4.4. The expression of jZ in local CC coordinates

(* el a8 8, T%, Qfp, B))

. d BUC ] _ _ a2y’ _ ; 9
JZ=UAE;I - (Bx_B) ecD F)‘-FQB 14 Kl Bﬁxgaxﬂ eJ.l T 2 (- 1)K(A+P)aga
KP
a%v! 8
'|"2€P €x 9xBgxA €; (-1 _Bf'xg. (23)

Let us return to consider the local section 5,. The pull-back of its jet extension
js=Ji@ o jso b (24)

can be regarded as 2 way in which to describe the action of superdiffeomorphisms on JE.
To this end we compute the action of its pull-back on £ € hor Q*JE

JSHL = B o js* o (&Y L. (25)
Differentiating with respect to ¢ and putting t = 0 we get
d - * RN | [N
—|  UsYL=L,(js)'L - (js)'L;zL. (26)
dr =0
This suggests to us the following definition.
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Definition 4.1. Let z be a point of JE and set 7/ = j(&,)(z). L is invariant with respect to
superdiffeomorphisms if

(U L£@) @) = L&) @n

The infinitesimal version of this requirement can be explicitly written without any reference
to sections; it is

Liz £=0, (28)

Before proceeding further, we shall derive a useful relation. To this end, let us consider
a section s and compute (js)*L;zL. We have

(jsY'Liz£ =(js)"(GZ] Ly +d(js)*(JZ_ L)
= (Jsy'[AJdL + () @) 1dL) + d(is)* (G Z_] £) 29
= (JITAL L]+ Lo(js) L

where A = jZ — (js).(v) is a vector of Ty (JE).
‘We can now formulate the following proposition:

Proposition 4.5, Let us fix a section s{x); the vector A has the following coordinate
representation:

a
A=~ eB(x»ci - b (ogoy ~ Lk D)

e 3%"
0 2
+(Ly deB(IJ)CDa +(L duw®(x))cp 3 — (Lydt’ (x))c_
“’c.u a5
2.7 2,7
F o)) r 8 v/ . 8 . (30)

~ e w
BgyA 1 ByxA 4 4
9x53x delp "~ 3xFax dwy p

Having established this, we find the following result about the relations between Lie
derivatives in JE and M.

Proposition 4.6, The following relation holds:

d
(jsY'LizL — Ly(js)'L = — T (Jsey' L= (js)"{A_|dL). (31
=0

The Lagrangian form £ can hence be written in the following form:
1 r =
L=~ Z def L dx Ly 4 el 08 8 TS5, Q5. B (32)
Agin

or, by using CC coordinates, in the equivalent form

1 B r
£=E Z et . A"ﬁm Ay (x HAD,GJA-’G' TKP'QKP"“ ). (33)

We are now ready to compute L;zL. By remarking that L;ze* = 0, we get the following
result.

Proposition 4.7, Let us choose CC coordinates in JE. Then the Lagrangian £ is invariant
with respect to superdiffeomorphisms if and only if

JZ(L4..4) = 0. (34)
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5. The Lie group action and superdiffeomorphisms

Now we return to consider the action of G on E; since this action can be lifted to JE, we
consider the first jet extension of the field ¥ € vert(E). We shall say that £ is G-invariant
if

LyL=0. (35)

Clearly a more general definition of invariance, including divergence terms, can also be
proposed; however, the present one is sufficient for our purposes.
The following proposition holds.

Proposition 5.1. Let us choose standard coordinates in JE. The local expression of jY is

¥ =

a d
C E
B f —€r AapaC 3¢ E - frAafﬂng;

—[ZDBDAAG - (( 1)B(A+b)(DAAb)wB +( l)bA(DBAb)wA )Cdb] 39 ¢

rAbtbr a-—- TBA pbc aTBA (36)

Let us then consider equation (35). In this equation there are terms multiplying the
second and the first derivatives of A%. Requiring that these terms vanish implies
aL 8L
el 2 G7)
982 5y 982, dew
In other words, £ has to depend on the first derivatives of w only through the curvature
components and, moreover, £ has to be independent of w. On the other hand, the
requirement that linear terms in A“ vanish, implies the following equations in standard
and CC coordinates, respectively:

3£ 3L a
A paCa + ErAa a}rg + :I;‘Aararsga_ss
oL aL
T5A% E—— + QpaA®Cl—r =0
+Ipga ﬂacaTBE + QpaA%Cye 35’2;4
ac ac Y.
AapaC' de E +'§r"40 a: as + (E.F:Aa ar - Aapaf"‘fd) a,‘H_'. d (38)
=p
aL
+(Tx5A%0,6 — 24°0, % TcE) == 2T E
KP
T oo e a aL
-I-(QKPA Cac —2A paKQCP) Y =0.
KP

Let us summarize our general discussion. The Lagrangian £ is invariant with respect
to the combined actions of G and of superdiffeomorphisms if

(i) L/x4 =0and Ljw =0,

(ii) £ depends on the derivatives of ¢,? and @ only through of the components the
curvature and torsion forms;

(iii) equation (39) holds;

@iv) £A1 A, /6’A =0.
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6. The Poincaré-Cartan form

We are finally ready to discuss the Poincaré—Cartan form ®; from proposition 3.2 we know
that we have to assume that that £ is a geometrical Lagrangian form. In the opposite case
no classical form analogous to Poincaré-Cartan exists.

First of all, we analyse the structure of Lagrange field equations. In general, they have
the form

L = (~1yer - d 3z
3E" dxC L
L d ac
= 1CE+A) _—_
BeB b dx€ 3e "‘ (39
aL d B.C
dwg dx€ dwge’
Now, by using covariant coordinates, we write the field equations in the form
ac d 3£ L
ﬁ"( )de,,a.-.,'f'( 14w fbra.-.s““o
aL g 9L d 6‘!.'
(-1 C(M+4) 4 2(~1 BiM+Ay_9
dwyg BQCbM
+2(~1 )*‘-‘WH) d az: =0, (40)

Finally, by relying on the assumption that the Lagrangian is ‘geometrical’, we can write the
field equations in a more concise and better suited form.
First of all, let us introduce the forms

oL o 3L

= —Aa+a)
L1o%e ( ) @n
8L — (_ 1)(A+B)(A+B+a)
982 5 o

and, similarly, £/E", Lje?, £/87, £/TA.
Then, the following theorem holds true:

Theorem 6.1. Let us assume that £ is a geometric Lagrangian, The field equations can be
written in the form

aL L

G,({-’) = 5? -—Da'_"’ =0

aL
= 42
Gale) = + Dozz =0 (42)

6£ BE

Gylw)= — + D -+ da=0
where the ‘current densuy Jp i
L ;9L

Ja= (1PePpfos + (S E T “3)
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The symbol D denotes the exterior covariant derivative operator,
Now we enter into details about the Poincaré—Cartan form. We put

@ =L — (De* — THQ,(e) — (Do — Q%) Q,(w) — (DE" ~ E")Q,(§) (44)
for some Q,(¢) € hor Q"' JE and some @, {w), @ale) € hor2"~2JE. Thence:

Theorem 6.2. Let us assume that £ is geometric and consider a vertical field X € T(JE).
If Q,(8)=L]8", Qa(w)=L/Q% and Q4(e) = L/T4, the equation iy d® = 0 is verified
iff the field equations (42) for £ hold.

To derive symmetry conditions we now compute L;z®. Using the expression for jZ
we get

Lizet = LjzT* = L;Q° = ;78" =0, (45)
Consequently,
Ljz® = LizL + (De? — T*)L;304(e) (Do — %)Lz 0u(w) + (DE" ~ EN)L;z 3, (5).(46)

This last equation gives the required relation between the symmetries of Lagrangian
dynamics and the Poincaré—Cartan formalism for superfield theory.

7. An example. The Poincaré—Cartan form of N = 1 supergravity

‘We consider as an example the theory of N = 1 supergravity. The supermanifold M has
dimension (4, 4) and the indices i, j, k,! run through 1,...,4. We denote by ¢' = dx?e
(i even), by e = dx*¢ (« 0dd) and by § = De. Following {35] we consider the following
supermanifold Lagrangian 4-form:

L= s,-jk;eiefs'zk! + 496)/1' yseei (47)

which is manifestly geometric. No auxiliary field is present. We have
. , aL

g—g = 2e’9"“"s,-m - 48C}/fysee‘ ﬁ =

aL . ac .

35 = ~4OCrysTe 25 = Cnivsee (48)

al ac I,

ok =0 ook = ¢ ¢tk
and the Poincaré—Cartan form is given by

O =216 e’ Q¥ + 80Cy; ysee’ — Do'*eypeefe’ — 4DeCy,ysed. (49)

An analogous procedure can also be followed with minor changes for N = 2 supergravity
theory, but the formulae become more complicated.
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