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Abstract. In this work we show how the Poincad-Cman form can be used to describe the 
symmetries of Lagrangian supersymmebic (possibly p-adic) field theories We show that the 
existence of the Poincar- form in supermanifold theory is ensured only in a relevant 
class of Lagrangian densities. Moreover, we give an abstract characterization of supersymmetric 
invariance based on the PoincarMktan form. 

1. Introduction 

Various supersymmetric models of field theories have been considered (for a review see 
[ 1-31), Unfortunately there is as yet no experimental evidence of supersymmetry in nature, 
although ideas from supersymmetry have proved very useful in mathematics [2]. The notion 
of a supermanifold r4-81, which has mainly been developed to deal with supersymmetric 
theories, gives a convenient approach for discussing an arbitrary field theory, not necessarily 
a supersymmetric one. 

As is well known, in the Feynman path integral approach to quantization one deals with 
a classical action in which fermionic fields are represented by anticommuting fields. Also 
recall that any gauge theory being quantized by using the BRST procedure should include 
anticommuting variables (see 191). 

In this article, we develop an approach based on supermanifold theory which is suitable 
to describe models with anticommuting fields which are not necessarily supersymmetric. 
This provides us with a framework which is general enough to include such different 
theories as the usual quantum electrodynamics. the Yukawa interaction, superstrings and 
supergravity, as well as BRST-quantized gauge theories. Although many models with 
anticommuting fields have already been considered in great detail in the literature, the 
purpose of this article is to give an exposition of theories with anticommuting fields with 
the same degree of generality as occurs in classical mechanics [9-111. 

We consider a functional analytic approach to superanalysis and we obtain a unified 
approach to finite dimensional as well as to infinite dimensional systems. This could be 
interesting, for example, in view of the known analogy existing between the description of 
the rigid body motion in finite dimensional mechanics and the infinite dimensional theory 
of incompressible fluids [121. 

Our main results are true also in the field of p-adic numbers (for p-adic superanalysis, 
quantum mechanics and field theory see [13-151). 
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We consider field theories with fields taking values on a supermanifold and arguments 
on a real or p-adic manifold and we discuss fields which are maps from a supermanifold 
to another supermanifold. We study the action of superdiffeomorphisms on the Lagrangian 
density L and the Poincar6Xartan form 0. 

Some elements of the theory of the action of the superdiffeomorphism group on a 
supermanifold field theory can be found in the article 1161; since we use some notation 
already introduced in that article, we suggest to the reader not familiar with jet-bundle 
theory to read this article. In the present article we significantly extend the results presented 
there by studing in great detail the action of the superdiffeomorphism group by introducing 
a particular system of coordinates called 'covariant coframe coordinates' which will allow 
us to obtain a simple way to characterize supersymmetric Lagrangian density. 

Moreover, by returning to PoinwBCartan form theory, we show that 0 exists globally 
if L: is geometric and, in this case, the field equations follow from the Poincar&Cartan 
form as in usual field theory (see, e.g., [17]). 

As an example, we shall explicitly consider the theory of N = 1 supergravity and we 
shall give the relevant PoincarKartan form. 

We remark that the whole discussion will be given in a consequential way and results 
will be summarized as propositions which, accordingly, will not be followed by 'formal' 
proofs. 

2. Some concepts from real and p-adic supermanifold theory 

As is well known, there are several mathematical approaches to supermanifold theory. For 
our purposes it will be convenient to rely on the definitions in [4]. The main ingredient of 
a supermanifold theory is a &-graded commutative Banach superalgebra Q over a normed 
field A [13-18]: for the real Grassmannian case see [19-221. More precisely, Q is a 
Zz-graded commutative Banach algebra Q = Qo 8 Ql such that aiaj = (-l)'jaja; if 
ai E Qi,aj  E Qj. 

Let us remark that the field A over which Q is a Banach space is assumed to be quite 
general: it can be R, C or also the field Qp of p-adic numbers. As a consequence, ow 
theory is also true in the framework of p-adic supermanifold theory [73-25]. Since p-adic 
supermanifold theory is not very extensively covered in the literature, we present some 
details. 

Q," x 
Q; endowed with the norm llull = E. Ilujll; in the p-adic case we set llull = 
maxl<j6.+m llujll in order to obtain a non-Archimedean norm. 

A map f: V"" + Q is called S-differentiable (or supersmooth) in x E V","' if it is 
differentiable in the FrechW sense 1261 and if its Frech6t differential (LJf)(x): PI"."' + Q 
in the point x is multiplicative. In this article we require that the multiplicative operator 
describing the Frechtt operator is unique: to this end, we assume that Q admits a trivial 
Q I -annihilator ([U]). 

A supersmooth map f will be called an Sx map if it is k-times continuously 
superdifferentiable. The set of superanalytic (abbreviated SA) maps f: U c V",'" -+ Q 
is denoted as Su(U). (for the p-adic manifold case see [28] for details). 

We now define S C x ( U )  to be the set of Sh(U) maps such that IlD'f(x)ll is bounded 
for any x E U. If k # o, SC'(U) is a Banach space with respect to the norm 

"he (n,m)-dimensional superspace is the A-linear Banach space V","' = 
n+m 
,=I 
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An (n,m)-dimensional Sk supermanifold M is a topological manifold with a 
superdifferential structure. In some cases the algebra Q admits a projection E :  Q + A, 
often called the body map. In these cases, under some further technical assumptions [4,29], 
one can construct the ordinary n-dimensional body manifold MO by glueing together all the 
locai projections E ( x ' .  . . . , en+m) = ( r ' ,  . . . , r", 0, . . . , 0). 

Let E be a supervector bundle R: E -+ M \uith the vector superspace F as standard 
fibre ([4]). 

Let p be an Sk automorphism of E. Its first jet extension j p  of p is the unique 
automorphism of J E  such that, for any local section s: U c M + E,  j n  o j p  = j3  o jrr 
and jp D js o j3-' = j ( p  0 sj3-I) (see [301). 

Finally, consider a one-parameter group {pZ} ( t  E A )  of supersmooth automorphisms 
of E and denote by Y its generator (for p-adic supermanifold theory we assume also that 
every pr is strictly differentiable [23,24]). 

?he generator jY of (j(p,)} is the je t  extension of Y. In local fibred coordinates 
of E ,  where x A  = ( x ' ,  ..., x",B"+',  ..., On+'") are coordinates in M and vu = 
( V I , .  ..U', U'+', . . . , U'+') are coordinates in F (dimF = (r, s)), we set 

By using local fibred coodinates ( x A ,  U#, v f )  in JE, we get 

3. Supermanifold Lagrangian theory 

In a supermanifold theory there are essentially two possibilities for constrncting the action 
functional; the first one relies on using the Berezin integral to construct a 'top form' in M 
and defining the action as functional by means of a 'scalar Lagrangian' 13 as 

/.Cd"xd"'B. (3 ) 

In the second approach we assume instead that there exists a body manifold MO = @ ( M )  
of M and consider a set of local injections (i,) (see 1161 and the following for details). 

As usual we denote the 'configuration bundle' over M by E; the standard fibre is a 
vector superspace F and local coordinates are ( x A ,  U'). We also assume that the Lagrangian 
is a bounded, horizontal and SA n-form of J E  with values in Qo, i.e. L E horQ'(JE). 

Now, for every open subset U, of M ,  for every local injection i,: V. + U, (V, denotes 
the body of U,) and for every section s of E ,  we define the action integral as 

(4) 

This integral is calculated on MO and it is a standard integral of Banach valued functions 
(see also [7, 18,31,32]). 

The second approach allows us to build a very rigorous integration theory and a 
variational calculus in the framework of Banach analysis; in this article we shall rely on 
this second approach and, for the sake of clarity. we begin by giving some further detail. 

If M is an SA supermanifold with body MO there always exists an atlas A of M 
((Uu, &)} and an atlas 

(i) @(Ua) = V. for all a; 
of MO {(Va, t,)} such that U161 



126 R Ciunci et ul 

(ii) for any CY there are analytic embeddings i: V, -+ U, (local injections) such that @ - i  

(iii) for any couple of local injections i ,  k :  V, --t U, there is an SA automorphism x of 

(iv) for any map i there are maps f: Vu + Qt, such that i*flava = 0; 
(v) if o is a p-form on U c M, p < n and i'o = 0 for all local injections i: V -+ U 

then w = 0. 
Notice that these conditions do not imply, in general, that a global injection of MO in 

M exists. 
Now we give a Banach structure to the space of local sections of E by stating that the 

completed tensor product B, = SCk(U,) @ F is a Banach space. 
Now we consider the problem of defining the space of admissible variations. For every 

Vu and every injection i, the set of admissible variations related to the open subset U, and 
to the local injection i: V, + U, is the Banach space B,J = [s E r(U.)li*s = 0 on aV,). 
r(U.) denotes the set of local sections s defined on U, E M with values in &(U,) E E. 

This space can he regarded as the space of tangent fields X E Vert T E  such that their 
components X' satisfy the equations (i*X')lav, = 0. 

Let us consider again the action functional (4). The following two equations are 
equivalent and characterize the critical sections s : 

(5) 

is surjective; 

M such that i = x . k; 

DA.(i, S) . X = 0 

for all a, all i and all X s.t. X' E Be,i. 

and coordinates U' on F; ( x A ,  U') are coordinates in E and ( x A ,  U', U;) in J E .  
In the following we use coordinates x A  = ( x i ,  ea) on M (i = 1, . . . n;  LY = 1,. . . , n)  

According to this notation the Lagrangian L is 

d X A l  . . .dXA"LA ,.., &(U'. us') 
AI ... A, 

where A , ,  Az, . . . = 1, . . . , m + n ,  
In this framework a particular role is played by the so-called geometrical Lagrangian 

forms. They are the Lagrangians for which there exists forms Ccju" which allow us to write 

where h' = dxAh', for any admissible variation h'. The terms C/u i ,  Cfu" are related by 
the equation 

which, in turn, can be written as a set of algebraic restrictions on the derivatives of C, 
Lagrangian forms which are built up by means of connection forms, curvature and torsion 
forms, by using the wedge exterior product are geometrical (1161). 

Proposition 3.1. Let us assume that L is a geometrical Lagrangian; a section s is critical iff 

is'- ac -d( j sy -  ac -0. 
a U' an. 
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we put X = b'a/au' and compute i+(js)'LjxC = i*( js) ' jXJ de. Prooj For X E 
We have 

(s*br)((js) 'drA-(-l)  A(A+r) 

a 
= /i'(s'b') ( ( js)*-  ac 

a U' 
We have reported the explicit calculation, since OUT hypothesis about C allows us to relax 
the so-called 'kinematical constraints' of Wess and Zumino [33]. By using the fact that the 
local injection i is arbitrary the first term vanishes which, in turn, yields the required field 

0 equations since the second term vanishes for the boundary conditions. 

Now we study the Poincar&-Cartan form; it has the following expression 

0 = C + (du' - drAwA) Q, ( 1 1 )  

where the forms Q, E horn"-I(JE) c3 F' are still to be determined. 
Now we suppose C/xA = 0 and compute the differential 

ac ac 
a U' au; (12) dO = dd-  +dui- - (dd -&'U,') dQr + dXAdVLQ,. 

Considering a vector field X of T ( J E )  written as 

B a  a a 
axB a v  avB 

X = a  -+bb'-+ci7 

we calculate ix d e :  

(13) +dx A r  du, ( a B i B Q , )  + (du' -dxAuA)ixdQ,. 

Consider now a local injection i and calculate 

i' , j s*  . ix dO = 0. 

We observe that the terms multiplying the coefficients Cx vanish only if L is geometrical 
and Q, = & / u " .  Moreover, the terms multiplying aB cannot he zero in general. Our final 
prescription for the Poincar&-Cartan form is hence 

(15) 
ac 
a.  0 = C + (du' - dxAuA) -ub 

We can finally state the following 
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Proposition 3.2. Let L: be a geometrical Lagrangian form; the expression 

i ' .  j s ' . i xdO=O (16) 

is zero for each vertical vector field X E T ( J E )  iff the following equations are satisfied: 

4. Symmetries, superdiffeomorphisms and jet exteustons 

We assume that the configuration bundle E -+ M is the fibred product (see, e.g., [34]) of the 
bundle V ( M )  of linear coframes on M ,  the bundle of connections C ( M )  on some principal 
superfibre bundle P(M, G) and a further bundle F ( M )  of zero forms with values in some 
vector superspace F. We denote by g the super Lie (SL) algebra of G. More precisely, 

E = V ( M )  x y  C ( M )  x y  F ( M )  

and a local sections of E is s(xA) = (xA,eE = dxCe~(x ) ,wo  = dxcw/(x), t'(x)). 
A point U E E describes a connection, an extra field and a metric, by regarding eB as 

a Lorenzian coframe; in other words, the metric is 
Every element a of G naturally acts on C ( M )  and, by means of suitable representations, 

on V ( M )  and F ( M ) .  
We denote by C,: the structure constants of the SL algebra g and by the symbols po& q,; 

the generators of the representations of the actions of g on T M  and F respectively. 
By considering a fibre-depending action of G on E ,  one obtains a vertical motion in 

E the tangent vector field of which will be denoted by Y. Then the following proposition 
holds. 

Proposition 4.1. Let us denote by An an element of g; the local representation of the vertical 
field Y describing the vertical motion induced by An is 

eAeE.  

where 

The bundle E is a bundle of (super)-geometrical quantities; by considering a 
superdiffeomorphism p: M + M. one obtains a natural action on E given by the pull- 
back & = @'. Accordingly, the following holds. 

Pmposition 4.2. Let pf be a one-parameter SL group of SA diffeomorphisms of the 
supermanifold M. Then the couple (pt.& = @;' *) is a oneparameter SL group of SA 
automorphism of E .  For any local section s the map sl = @' o s  o PI is also a section. 

The action of 4, can be described as follows. If U = (xA. e' = dxAe2, 0'' = 
dxAw;, 5') is a point of E and U = b,. then the coordinate description of U + w = & ( U )  

is 

xA -+ xA + t u A  

Now, there is a large arbitrariness involved in the choice of the coordinates in E .  In 
particular, we use the coframe eA as basis for the connection one forms and set w" = eBB,O. 

e; + e: - t u %  e: w t  + 0; - t u s w e  e r  + e r .  
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Of course, U; = e,"&;. In this way the coordinate description of the map U + U) = & ( U )  

is 

x A  + x A  + t u A  eAB -+ e: - tu: e: 5," + &: t r  + 6'. (19) 
Under the above choice, the following proposition holds. 

Proposition 4.3. The vector field Z ,  tangent to &, has the following representation in the 
coordinates x A ,  e,", &/, e' 

Let us now consider the jet extension j ( & )  of & to J E .  The couple (PI, j (&) is still 
an automorphism of JE. We introduce the following 'covariant coordinates', for which the 
relation to the standard ones on a section is 

am; 
a x A  

js*a,,"B = -2- - ( - l )A(B+b)o,b  A U c c  a 
A cb 

(- l ) A ( B + W e B D  A W:Pos 
ae; 
a x A  

js*TA$ = -2- - 

Now, as the last step, we use again 'covariant coframes' (CC) coordinates: 
- E -  B &,,"=e, -1 s os" 
e A  - e A  

- C -  -1s  - I R  1)A(S+Bl 
6 7  = y TAB - e B  eA T,&(- 
; r  -IS-, " C - - 1  S - 1  RaRC,( -1y4(S+B) ,  
aA = e A  as nAB - e B  e A  

We now consider the lift of Z to JE. The following proposition holds. 

Proposition 4.4. The expression of j Z  in local CC coordinates 
A D - o  " C  - a  

( X  9 e A  s 3 e r ,  TKP, Q K p ,  6;) 
is 

Let us return to consider the local section st. The puli-back of its jet extension 

j s ,  = j (&')  o j s  o p t  (24) 
can be regarded as a way in which to describe the action of superdiffeomorphisms on JE. 

To this end we compute the action of its pull-back on C E hor am J E 

j s ;L  = 0; o js* o j (&'SL.  (U) 
Differentiating with respect to t and putting t = 0 we get 

This suggests to us the following definition, 
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Definition 4.1. Let z be a point of J E  and set i = j(&)(z). L is invariant with respect to 
superdiffeomorphisms if 

(L&')*L(Z))(Z') = L(2').  (27) 

The infinitesimal version of this requirement can be explicitly written without any reference 
to sections; jt is 

LjzL=o.  (28) 

Before proceeding further, we shall derive a useful relation. To this end, let us consider 
a section s and compute (js)'L,zL. We have 

(js)'L,zL = (js)*(jZJ dL)+d(js)'(jZJC.) 
= ( js ) * tAJdC.+( js ) , (u)JdLl  +d(js)'(jZJL) (29) 
= (jsYIAJ dLl+  Lu(js)*L 

where A = j Z  - ( js)+(u)  is a vector of T,,o-,(JE). 

Proposition 4.5. Let us tix a section s(x); the vector A has the following coordinate 
representation: 

We can now formulate the following proposition: 

Having established this, we find the following result about the relations between Lie 
derivatives in J E  and M. 

Proposition 4.6. The following relation holds: 

(js)'LjzL - L,(js)'L = - - ( j sJL= (jsYIAJdL]. (31) 
dt d l  t=o 

The Lagangian form L can hence be written in the following form: 

or, by using Cc coordinates, in the equivalent form 

We are now ready to compute LjzL. By remarking that LpeA = 0, we get the following 
result. 

Proposition 4.7. Let us choose cc coordinates in JE. Then the Lagrangian C. is invariant 
with respect to superdiffeomorphisms if and only if 

jZ(fAt...A") = 0. (34) 
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5. The Lie group action and superdiffeomorphism 

Now we return to consider the action of G on E ;  since this action can be lifted to J E ,  we 
consider the first jet extension of the field Y E vert(.!?). We shall say that C is G-invariant 
if 

LjYC = 0. (35) 

Clearly a more general definition of invariance, including divergence terms, can also be 

The following proposition holds. 
proposed; however, the present one is sufficient for our purposes. 

Proposition 5.1. Let us choose standard coordinates in J E .  The local expression of jY is 

Let us then consider equation (35). In this equation there are terms multiplying the 
second and the first derivatives of An. Requiring that these terms vanish implies 

In other words, has to depend on the first derivatives of w only through the curvature 
components and, moreover, 1: has to be independent of w .  On the other hand, the 
requirement that linear terms in A' vanish, implies the following equations in standard 
and cc coordinates, respectively: 

Let us summarize OUT general discussion. The Lagrangian 
to the combined actions of G and of suDerdiffeomorphisms if 

is va nt ith respa 

(i) C/xA = 0 and C/o: = 0; 
(ii) C depends on the derivatives of e," and w: only through of the components the 

curvature and torsion forms; 
(iii) equation (39) holds; 
(iv) L A ,  ... A./e/ = 0. 
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6. The Poincar&Carfan form 

We are finally ready to discuss the Poincd-Cartan form 0: from proposition 3.2 we h o w  
that we have to assume that that C is a geometrical Lagrangian form. In the opposite case 
no classical form analogous to Poinca6-Cartan exists. 

First of all, we analyse the structure of Lagrange field equations. In general, they have 
the form 

cr d ac (-1) -- ac -=  
aer k c  ae.; 

Now, by using covariant coordinates, we write the field equations in the form 

Finally, by relying on the assumption that the Lagrangian is 'geometrical', we can write the 
field equations in a more concise and better suited form. 

First of all, let us introduce the forms 

and, similarly, L/er, L/eA, L p r ,  L/TA. 
Then, the following theorem holds true: 

Theorem 6.1. Let us assume that 12 is a geometric Lagrangian. The field equations can be 
written in the form 

ac ac 
at* as' G,(() E - -D- = O  

where the 'current density' J. is 
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The symbol D denotes the exterior covariant derivative operator. 
Now we enter into details about the PoincarG-Cartan form. We put 

0 = C - (DeA - T A ) Q A ( e )  - (Dw" - QQ)Q.(w) - (DI' - =')e,(() (44) 
for some e,(() E horQ"-'JE and some Q,(w), &(e) E horQ"-*JE. Thence: 

Theorem 6.2. Let us assume that C is geometric and consider a vertical field X E T(JE).  
If Q,(C) = C / F ,  Q.(m) = C/Qa and QA(e) = C / T A ,  the equation i x d 0  = 0 is verified 
iff the field equations (42) for C hold. 

To derive symmetry conditions we now compute L j z 0 .  Using the expression for j Z  

(45) 

we get 

LjzeA = L .  Jz T~ = L ~ ~ Q ~  = L,&' = 0. 

Consequently, 

LjzO = LjzC+ (DeA - TA)LjzQA(e)(Dw" - CP)LjzQ.(o) + (D(' - E')Lj~Q,(e) . (46)  

This last equation gives the required relation between the symmetries of Lagrangian 
dynamics and the PoincarKartan formalism for superfield theory. 

7. An example. The PoincaMartan form of N = 1 supergravity 

We consider as an example the theory of N = 1 supergravity. The supermanifold M has 
dimension ( 4 , 4 )  and the indices i, j ,  k ,  1 run through 1 , .  . . ,4 .  We denote by ei = dxAeb 
(i even), by e = d x A e z  (or odd) and by 0 = De. Following [3S1 we consider the following 
supermanifold Lagrangian 4-form: 

(47) c = &ijkreiejQki + 4 e c K  ysee' 

which is manifestly geometric. No auxiliary field is present. We have 

and the Poincar6Xartan form is given by 

0 = 2Eijkreie'Qki + 86'Cyiysee' - Dwik&i~p,,ePd - 4DeCyiysee'. (49) 

An analogous procedure can also be followed with minor changes for N = 2 supergravity 
theory, but the formulae become more complicated. 

Acknowledgments 

This work was carried out under the auspices of the GNF'M of CNR and under the research 
program 'Metodi Geometrici e Robabilistici in Fisica Matematica' of MURST; one of the 
authors (W) would also like to thank the GNFM for a visiting professorship when this work 
was undergone. 



734 R Cionci et al 

References 

[I] Wess J and Bagger 1 1983 Supersymmetry ondSupergroviry (Princeton NI: Princeton University Press) 
[21 Schwvr J H Green M B and Wiften E 1987 Superstring Theory (Cambridge: Cambridge University Press) 
[31 Ferrara S and Van Nieuwenhuizen P 1976 Consistent supergravity with complex spin-3fl gauge field Phys. 

[4] Cianci R 1990 Introduction to Supermonifolds (Napoli: Bibliopolis) 
[5] Berezin F A  1966 The Mefhodr <@Second Quantization (New Yo*. Academic) 
[61 Berezin F A and Leiles D A 1975 Supermanifolds SOP. Moth DoN. 16 1218 
[7] De Win 5 1984 Supermi,Wdr (Cambridge: ambridge University Press] 
[E] Bruzu, U, Bxtocci C and Hernandez Ruiprez D 1991 The Geometry of Supermmifolds (Dordrecht: Kluwer) 
[91 Henneaux M 1988 CIassical Foundations of ERST Symmetry. Monogrrrph ond Textbook in Physical Science. 

Rev. Left. 1669. 

Lecture Notes 7 (Napoli: Bibliopolis) 
[IO] Francaviglia M. Fermis M and Volovich I I993 BRST-invariance and Poinc&xtan forms to appear 
[I I]  Henneaux M 1991 Spacetime localily oithe brst formalism Cormnun. Mah. PhyJ. 140 1 
[I21 Arnold V 1969 Methddes Methdmatlques de la Mdcanique Clarsique (Moscow: MIR) 
[I31 Vladimirov V S and Volovich I V 1984 Supemalysis. i. differential calculus Theor, Murk Pkys. 59 317 
[I41 Volovich I V, Vladimirov V S and Zelenov E I 1992 pudic Numbers in Mathemarical Physics (Singapore: 

[i5J Khreonikov A Yu 1990 Malhem3tical methods of non-Archimedean physics Russian Mafh Suwey4S 87 
[16] B r u m  U and Cianci R 1987 Variational calculus on supermanifolds and invarinnce properties of superspace 

field theories 1. Math. Phys. 23 I86 
[17] Fmcaviglia M and Ferraris M 1991 The Lagrangian approach to conserved quantities in general relativity in: 

Mechonim, Annlysir ond Geometry; 200 yemr afiw Logronges ed M Prancaviglia (Amsterdam: North- 
Holland) 

World Scientific) 

[I81 Vladimimv V S and Volovich 1 V 1985 Superanalysis. U. integral calculus Theor. Math Phys. 60 743 
[I91 Rogen A 1980 A global theory of supermanifolds 3. Mah. Phys. 21 1352 
[ZO] Rogers A 1981 Super Lie groups: global toplogy and local sbllchue J. Muth. Phys. 22 939 
[ZI] Rothstein M 1986 The axioms of supermanifolds and a new sbllcture arising from them Tronr. Amer. Math. 

[22] Jadczyk A and Pilch K 1981 Superspaces and supersymmetries Commun. Math. Phys. 78 313 
[U] Cianci R and Khrennikov A 1993 p-adic superanalysis i: infinitely-generated Banach superalgebras and 

[U] Cianci R and Khrennikov A 1993 p - d i c  superanalysis ii: supermanifolds J. M a h  Phys, 34 1995 
I251 Cianci R and Khrennikov A 1994 p-adic superanalysis ilk the structure of p-adic super Lie ~IOUQS J. Moth 

[26] Bourbaki N 1967 V a r i h b  Dij.$&ntielles ur Analytiques (Paris: Her”) 
[27] Khreunikov A Yu I988 Functional superanalysis. Russian M a k .  Sum, 43 103 
[28] Serre J P 1965 Lie Algebras and Lie Gmups (New York W A Benjamin) 
I291 Reina C Catenacci R and TeofilaRo P 1985 On the body of supermanifolds J.  Math Phys. 26 671 
DO1 Henundez Ruiperez D and Munoz Masque J 1984 Global variational calculus on gnded manifolds: i - 
[3l] Rogm A 1985 On the existence of global integral forms on supemifo lds  1. Math Phys. 26 2749 
[32] Rogen A 1985 Realising the berezin integral as a supenpace contour integral I .  Math Phys, 27 710 
[33] Wess I and Zumino B 1977 Superspace formulation of supergravity Phys, Lett. 866 361 
[34] Bott R and Tu L W 1982 Diferential Form in Algebraic Topoiogy (Berlin: Springer) 
1351 Ne’eman Y and Regge T 1978 Gauge theory of gravity and supergravity on a group maniiold Rivista Nuovo 

Soc. 297 159 

algebraic groups J. Math. Phys. 34 1986 

Phys. 

gmded jet-bundles J. Moth Purea- AppL 63 

Cim I 


